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Abstract: Background: Gray matter (GM) density and cortical thickness (CT) obtained from struc-
tural magnetic resonance imaging are representative GM morphological measures that have been
commonly used in Alzheimer’s disease (AD) subtype research. However, how the two measures
affect the definition of AD subtypes remains unclear. Methods: A total of 180 AD patients from the
ADNI database were used to identify AD subgroups. The subtypes were identified via a data-driven
strategy based on the density features and CT features, respectively. Then, the similarity between the
two features in AD subtype definition was analyzed. Results: Four distinct subtypes were discovered
by both density and CT features: diffuse atrophy AD, minimal atrophy AD (MAD), left temporal dom-
inant atrophy AD (LTAD), and occipital sparing AD. The matched subtypes exhibited relatively high
similarity in atrophy patterns and neuropsychological and neuropathological characteristics. They
differed only in MAD and LTAD regarding the carrying of apolipoprotein E ε2. Conclusions: The
results verified that different representative morphological GM measurement methods could produce
similar AD subtypes. Meanwhile, the influences of apolipoprotein E genotype, asymmetric disease
progression, and their interactions should be considered and included in the AD subtype definition.
This study provides a valuable reference for selecting features in future studies of AD subtypes.

Keywords: Alzheimer’s disease; gray matter density; cortical thickness; structural magnetic resonance
imaging; matched Alzheimer’s disease subtypes

1. Introduction

It is generally accepted that the neurofibrillary tangles (NFTs) of Alzheimer’s disease
(AD) derive from the entorhinal cortex, then spread subsequently to the association cortex
via the hippocampus, and finally invade the primary cortex [1]. However, several recent
studies have suggested that AD patients have striking differences in neuropathologic
distinctions, cognitive functions, demographics, and clinical progression, indicating that
AD is a heterogeneous disease with different subtypes [2,3]. The definition of the AD
subtype is an essential part of capturing the heterogeneity. As proved by some studies, the
gray matter (GM) change in brain region is closely associated with tau pathology in AD
patients with abnormal amyloids [4]. Therefore, GM atrophy pattern-based morphometric
measures have received increasing attention in the studies of biologically defined AD
subtypes [5,6].

Given the high-dimensionality of structural magnetic resonance imaging (sMRI),
automated region-based analyses have been conducted in the studies of AD subtypes by
parcellating the brain into anatomically defined regions. GM density and cortical thickness
(CT) obtained from sMRI are two widely used morphometric features. Both GM features
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respectively constitute multimode features with pathological information, so they have
been applied to studies on AD subtypes [7,8]. The GM density for each region-of-interest
(ROI) is computed as the sum of GM densities of all voxels within the ROI from the
voxel-based morphometry (VBM) maps using statistical parametric mapping (SPM). The
surface-based CT value is obtained by averaging the vertex CT values within all FreeSurfer
cortical ROIs [9,10]. The study results may be influenced by the technical differences
in VBM and FreeSurfer, both of which rely on ROIs parcellation that uses a predefined
template to identify morphometric changes, but defined ROIs are quite different. CT is one
of the hallmark features of AD, and a greater degree of cortical thinning in a disease-affected
region indicates the higher severity of AD [11]. However, CT analysis fails to detect the
abnormalities in subcortical areas such as the hippocampus [12]. Furthermore, in the early
stage of cognitive decline, CT analysis may be relatively insensitive to the abnormalities
of some medial temporal lobe (MTL) regions [13]. The density-based approach provides
complementary information to the surface-based analysis, thus effectively probing the
atrophied subcortical structures [14]. In several density-based studies, the MTL AD subtype
experiences severe atrophy in parts of the limbic system such as the hippocampus and
other subcortical ROIs [15–17], which is also verified by the higher distribution of tau in
the hippocampus in Murray’s study [2].

These two morphological measures may be correlated to some extent, where CT
measures cortical thinning, and the change in GM density measures a mixed change
in local CT, cortical folding, and gyrification. It has been suggested in some studies
that CT can drive facilitate the change in GM density [18]. However, most previous
studies on AD subtypes definition have focused on only one morphological feature. In our
earlier study, four AD subtypes were successfully defined based on the CT features [19],
among which each subtype presented its own neuropsychological and neuropathological
characteristics. Although several distinct AD subtypes have been identified in most studies,
they differ in the definition of AD subtypes, which may be partly attributed to different
representative morphological measures [3,19]. This raises a crucial question: How do
different GM measurement methods affect the definition of AD subtypes? To answer
this question, in the present study, AD subtypes were defined by density-based and CT-
based features, respectively, for AD patients from the Alzheimer’s disease Neuroimaging
Initiative (ADNI) database. If the matched subtypes could be generated by different
measurement methods, the characteristics of matched subtypes will be further explored.
To our knowledge, this study takes the lead in comparing the two GM morphological
measures in AD subtype definition.

2. Materials and Methods
2.1. Subjects and MRI Processing

The ADNI project was launched in 2004 [20]. The first phase (ADNI-1) lasted from
2004 to 2010, during which time the plan was to recruit a total of 800 individuals aged 50–90,
including AD: 200, cognitive normal (CN): 200, and mild cognitive impairment (MCI): 400.
The information of all participants of this project was derived from ADNI-1 baseline scans
(adni.loni.usc.edu). The T1-weighted images were acquired with a 1.5 T MRI scanner. The
scanning parameters were as follows: TR = 3000 ms, TE = 3.55 ms, slice thickness = 1.2 mm,
voxel size = 1.2 × 0.94 × 0.94 mm3 [21].

The density features used were acquired from ‘uaspmvbm.csv’, downloaded from
the ADNI website (https://ida.loni.usc.edu/, accessed on 3 January 2022), which were
extracted from VBM analysis via SPM software (version 5). A total of 116 anatomical ROIs
(90 in cerebrum and 26 in cerebellum) were defined using the automated anatomical atlas
(AAL) [14]. The CT features extracted by FreeSurfer version 4.3 (http://freesurfer.net/,
accessed on 3 January 2022) were acquired from ‘ucsffx.csv’, downloaded from the ADNI
website (https://ida.loni.usc.edu/, accessed on 3 January 2022). The thickness values are
based on the Desikan-Killiany atlas, including 34 parcels per hemisphere [10].

https://ida.loni.usc.edu/
http://freesurfer.net/
https://ida.loni.usc.edu/
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Only the subjects having both CT and density features were kept in the study. Fourteen
subjects were excluded due to inconsistencies. The screening process of subjects is shown
in Figure 1.

Brain Sci. 2022, 12, x FOR PEER REVIEW 3 of 13 
 

(AAL) [14]. The CT features extracted by FreeSurfer version 4.3 (http://freesurfer.net/, ac-
cessed on 3 January 2022) were acquired from ‘ucsffx.csv’, downloaded from the ADNI 
website (https://ida.loni.usc.edu/, accessed on 3 January 2022). The thickness values are 
based on the Desikan-Killiany atlas, including 34 parcels per hemisphere [10].  

Only the subjects having both CT and density features were kept in the study. Four-
teen subjects were excluded due to inconsistencies. The screening process of subjects is 
shown in Figure 1. 

 
Figure 1. Data screening process. Abbreviations: DS: Data set, ADNI: Alzheimer’s disease Neuroim-
aging Initiative, CT: Cortical thickness, VBM: voxel-based morphometry, AD: Alzheimer’s disease, 
CN: cognitive normal subjects, sMRI: structural MRI. 

2.2. Definition of AD Subtypes 
The features extracted from the screened subjects were input into the mixture of ex-

perts (MOE) model to define subtypes [22]. The process of subtypes definition and subse-
quent analysis is shown in Figure 2.  

 
Figure 2. Overview of the steps for AD subtype definition and analysis. Abbreviations: AD: Alz-
heimer’ disease, MOE: mixture of experts model, CT: cortical thickness. 

Before the features were input into the MOE model, the age, sex, years of education, 
and intracranial volume (ICV) were entered as nuisance variables, so they were regressed 
from the original features. First, the regression coefficient of CN (𝛽ே) was calculated us-
ing a generalized linear model as Formula (1):  

( ) (1 )
CN CNvalue value CN CN CN CN CNdensity or CT age sex edu ICVβ ε= × + + + + +  (1)

Then, the effects of each nuisance variable were regressed out of all subjects, as For-
mula (2): 

_ ( _ ) (1 )All all all all all all all allResidual density value or CT value age sex edu ICVβ= − × + + + +  (2)

Figure 1. Data screening process. Abbreviations: DS: Data set, ADNI: Alzheimer’s disease Neuroimag-
ing Initiative, CT: Cortical thickness, VBM: voxel-based morphometry, AD: Alzheimer’s disease, CN:
cognitive normal subjects, sMRI: structural MRI.

2.2. Definition of AD Subtypes

The features extracted from the screened subjects were input into the mixture of
experts (MOE) model to define subtypes [22]. The process of subtypes definition and
subsequent analysis is shown in Figure 2.
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Figure 2. Overview of the steps for AD subtype definition and analysis. Abbreviations: AD: Alzheimer’
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Before the features were input into the MOE model, the age, sex, years of education,
and intracranial volume (ICV) were entered as nuisance variables, so they were regressed
from the original features. First, the regression coefficient of CN (βCN) was calculated using
a generalized linear model as Formula (1):

densityvalueCN (or CTvalueCN ) = βCN × (1 + ageCN + sexCN + eduCN + ICVCN) + ε (1)

Then, the effects of each nuisance variable were regressed out of all subjects, as
Formula (2):

ResidualAll = density_valueall(or CT_valueall)− βall × (1 + ageall + sexall + eduall + ICVall) (2)

After the regression analysis, each subject was given a binary label, yi ∈ {−1, 1}. The
CN subjects were set as the reference group (y = −1) and the AD patients as the affected
group (y = 1). Ten-fold cross-validation was adopted for the MOE. The MOE combined the



Brain Sci. 2022, 12, 187 4 of 13

fuzzy c-means (FCM) and support vector machines (SVM). The joint optimization model
formula was as follows (3):

minimize
{wk}k{m

k
i }i,k

∑K
k=1
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1
2
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k
i )
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where K is the number of experts, m is the value of membership, N is the number of AD
subjects, C is the loss penalty, and t is the trade-off between the cost of SVMs and FCM.

The number of experts was fixed at four. The parameters C and t were simultaneously
optimized through the grid search, with a search range of {2−3~210}, respectively. The
selection of parameters mainly depended on the cross-validated accuracy (ACC), maximum
pair-wise inner-product (Wr), and Bezdek partition coefficient (BPC) [23]. Given all those
assessments, the density-based AD subtypes and CT-based AD subtypes were defined,
respectively. Each subtype was then named according to its atrophic regions.

2.3. Statistical Analysis

The characteristics included three main parts: (1) demographic, including age, gender,
years of education, onset age, and duration of AD. (2) Cognitive characteristics, includ-
ing the Mini-Mental State Exam (MMSE), Clinical Dementia Rating Scale-Sum of Boxes
(CDRSB), AD Assessment Scale-Cognitive Subscale (ADAS-Cog), and for subdomains
ADNI composite scores: memory (ADNI-MEM), executive (ADNI-EF), language (ADNI-
LAN), and visuospatial abilities (ADNI-VS) [24,25]. (3) Apolipoprotein E (APOE) genotypes
and cerebrospinal fluid (CSF) biomarker abnormality levels, including APOE ε2, APOE ε4,
beta-amyloid 1-42 (Aβ1-42), Phosphorylated tau (P-tau), and Total tau (T-tau). The cut-off
value of Aβ1-42, T-tau, and P-tau were 192 ng/L, 93 ng/L, and 23 ng/L, respectively [26,27].
The differences between matched subtype were compared. The differences of qualita-
tive variables were calculated via the chi-square tests. The quantitative variables were
assessed using analysis of variance (ANOVA), and pairwise comparison by the Dunnett’s
test. Statistical analysis was performed with SPSS, version 19.0, Armonk, NY, USA.

3. Results
3.1. Subtypes Definition and Matching

All AD subjects were divided into four subtypes. Considering all the evaluation
criteria of MOE, the parameter values were reasonably selected. The optimized parameters
and evaluation indicators are shown in Table 1.

Table 1. The parameters selection and evaluation results of MOE.

Method
Optimized Parameters Evaluation Indicators

t C ACC (%) BPC Wr

Density 2 2−3 77.3 (4.4) 0.82 (0.03) 0.32 (0.44)
CT 2−2 2−3 83.1 (4.8) 0.63 (0.02) 0.29 (0.07)

Abbreviations: t, C: the optimized parameters of MOE, ACC: cross-validated accuracy, BPC: Bezdek partition
coefficient, Wr: maximum pair-wise inner-product; data are presented as mean (standard deviation). CT: cortical
thickness.

The CT difference between AD subtype and CN were rendered in the same FreeSurfer
atlas to compare the differences of the match subtype (Figure 3). As can be seen from
Figure 3, the four subtypes defined by two features were one-to-one matched in cortical
atrophy regions, and named diffuse atrophy AD (DAD), minimal atrophy AD (MAD), left
temporal dominant atrophy AD (LTAD), and occipital sparing AD (OSAD), respectively.

The subjects in the matched subtype overlapped greatly, and their Dice scores, calcu-
lated according to formula (4), ranged from 71.8% to 84.8%. The ‘Subjects’ in the formula
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were from the matched subtype. The number of overlapping subjects (intersection subjects)
and the results of the Dice score in each matched subtype is indicated in Figure 3. The
characteristics of each subtype are summarized in Table 2.

Dice score =
2×

∣∣∣Subjectsdensity−based ∩ SubjectCT−based

∣∣∣∣∣∣Subjectsdensity−based

∣∣∣+∣∣∣SubjectCT−based

∣∣∣ (4)
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Figure 3. CT maps of subtypes defined by CT or density when compared with CNs. The brain maps
were uncorrected for multiple comparisons at p < 0.05. The statistical parametric maps included
all the subjects in each subtype. Abbreviations: DAD: diffuse atrophy AD subtype, MAD: minimal
atrophy AD subtype, LTAD: left temporal dominant atrophy AD subtype, OSAD: occipital sparing
AD subtype, CT: cortical thickness, n: the number of AD subjects, %: proportion of AD subjects in
a subtype.

Table 2. A brief description of each subtype.

Subtype Description Demographic, Neuropsychological, and
Neuropathology Characteristics

DAD Extensive cortical and
subcortical atrophy.

Severe and extensive deficits in all cognitive
domains. Higher proportions of APOE ε4 carriers,

higher levels of abnormal Aβ1-42 and P-tau.

MAD

With the least extent and
amount of atrophy in cortical

regions, but with sporadic
atrophy in subcortical regions.

Good cognitive performance in all fields among the
four subtypes. With higher APOE ε2 carriers, and
the lowest levels of abnormal Aβ1-42, P-tau, and

T-tau.
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Table 2. Cont.

Subtype Description Demographic, Neuropsychological, and
Neuropathology Characteristics

LTAD Asymmetrical atrophy in the
left temporal-parietal cortex.

A relatively low proportion of women, and a higher
proportion of APOE ε2 carriers.

OSAD
Prominent atrophy in most of
cortex and subcortex, except

the occipital area.
The higher levels of abnormal Aβ1-42 and T-tau.

Abbreviations: DAD: diffuse atrophy AD subtype, MAD: minimal atrophy AD subtype, LTAD: left temporal
dominant atrophy AD subtype, OSAD: occipital sparing AD subtype. APOE: apolipoprotein, Aβ1-42: beta-amyloid
1-42, P-tau: Phosphorylated tau, T-tau: Total tau.

3.2. GM Density Map between Matched Subtypes

Figure 4 presents the statistical parametric maps between AD subtype and CN of
matched subtypes. A false discovery rate (FDR)-corrected p-value threshold of 0.05 was
used. The regional GM atrophy between matched subtypes were roughly consistent. The
DAD exhibited extensive atrophy. In LTAD, the GM atrophy was found in the temporal lobe
ROIs, such as the hippocampus, amygdala, and fusiform. The more significant difference
was manifested in the left lateralized regions. The OSAD displayed the atrophy ROIs
in temporal, frontal, parietal, and posterior fossa structures. Compared to the DAD, the
differences between OSAD and NC were slightly smaller.

Brain Sci. 2022, 12, x FOR PEER REVIEW 6 of 13 
 

APOE ε4 carriers, higher levels of abnor-
mal Aβ1-42 and P-tau. 

MAD 

With the least extent and amount of 
atrophy in cortical regions, but with 
sporadic atrophy in subcortical re-

gions. 

Good cognitive performance in all fields 
among the four subtypes. With higher 
APOE ε2 carriers, and the lowest levels 

of abnormal Aβ1-42, P-tau, and T-tau. 

LTAD Asymmetrical atrophy in the left 
temporal-parietal cortex. 

A relatively low proportion of women, 
and a higher proportion of APOE ε2 car-

riers. 

OSAD 
Prominent atrophy in most of cortex 
and subcortex, except the occipital 

area. 

The higher levels of abnormal Aβ1-42 and 
T-tau. 

Abbreviations: DAD: diffuse atrophy AD subtype, MAD: minimal atrophy AD subtype, LTAD: 
left temporal dominant atrophy AD subtype, OSAD: occipital sparing AD subtype. APOE: 
apolipoprotein, Aβ1-42: beta-amyloid 1-42, P-tau: Phosphorylated tau, T-tau: Total tau. 

3.2. GM Density Map between Matched Subtypes 
Figure 4 presents the statistical parametric maps between AD subtype and CN of 

matched subtypes. A false discovery rate (FDR)-corrected p-value threshold of 0.05 was 
used. The regional GM atrophy between matched subtypes were roughly consistent. The 
DAD exhibited extensive atrophy. In LTAD, the GM atrophy was found in the temporal 
lobe ROIs, such as the hippocampus, amygdala, and fusiform. The more significant dif-
ference was manifested in the left lateralized regions. The OSAD displayed the atrophy 
ROIs in temporal, frontal, parietal, and posterior fossa structures. Compared to the DAD, 
the differences between OSAD and NC were slightly smaller. 

 
Figure 4. Statistical parametric maps of subtypes were identified by CT-based and density-based
compared with the CNs. The results were thresholded at FDR corrected p < 0.05. The statistical
parametric maps included all the subjects in each subtype. Abbreviations: DAD: diffuse atrophy AD
subtype, MAD: minimal atrophy AD subtype, LTAD: left temporal dominant atrophy AD subtype,
OSAD: occipital sparing AD subtype, CT: cortical thickness.
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3.3. Cognitive and Neuropathological Characteristics between Matched Subtypes

The characteristics of atrophic regions, demographic, cognitive, APOE genotype
(APOE ε2 and APOE ε4), and CSF biomarker levels are described in Figures 5 and 6. And
the characteristics of each matched subtype were summarized in Table 2. For each matched
subtype, most characteristics of density-based subtypes were consistent with those of
CT-based ones. The only difference was reflected in APOE ε2. More APOE ε2 carriers
in the MAD_CT than the MAD_density, while more APOE ε2 carriers were observed in
LTAD_density than the LTAD_CT.
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Figure 5. The characteristics of qualitative variables were captured by density features and CT
features. The chi-square test was used for comparison between matched subtypes. *: p < 0.05 within
the matched subtype. (A–C) The histograms for sex and APOE demonstrate what percentage of
AD subjects in each subtype were females and APOE carriers, respectively. (D–F) The histograms
for CSF (Aβ1-42, T-tau, and P-tau) indicate the abnormal percentage of AD subjects in each subtype.
Abbreviations: AD: Alzheimer’s disease, APOE: apolipoprotein, Aβ1-42: beta-amyloid 1-42, P-tau:
Phosphorylated tau, T-tau: Total tau. DAD: diffuse atrophy AD subtype, MAD: minimal atrophy AD
subtype, LTAD: left temporal dominant atrophy AD subtype, MAD: minimal atrophy AD subtype,
OSAD: occipital sparing AD subtype.
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Figure 6. The characteristics of quantitative variables were captured by density features and CT
features. Dunnett’s test was conducted comparing the subtypes within each method. (A): Age of
subjects in each subtype; (B): Years of education; (C): the duration of AD; (D): the onset age of
AD, (E–H): the cognitive scores of MMSE, CDR, ADAS11, and ADAS13; (I–L): the assessments of
ADNI composite score. Abbreviations: EDU: education, MMSE: Mini-Mental State Exam, CDRSB:
Clinical Dementia Rating Scale-Sum of Boxes, ADAS11: AD Assessment Scale-Cognitive Subscale,
which includes 11 tasks, ADAS13: AD Assessment Scale-Cognitive Subscale, which includes 13 tasks,
ADNI-MEM: ADNI composite scores for memory, ADNI-EF: ADNI composite scores for executive
function, ADNI-LAN: ADNI composite scores for language ability, ADNI-VS: ADNI composite scores
for visuospatial ability, yr: year. DAD: diffuse atrophy AD subtype, MAD: minimal atrophy AD
subtype, LTAD: left temporal dominant atrophy AD subtype, OSAD: occipital sparing AD subtype.

4. Discussion

This study mainly aimed to test the repeatability and variation of AD subtype defi-
nition between density-based and CT-based morphological measures. It transpired that
the subtypes generated by both features could morphologically correspond to each other
(Figures 3 and 4). There was a good overlap between matched subtypes among these
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four subtypes in the subjects, and the neuropsychological and pathological characteristics
between the matched subtypes were roughly consistent.

In previous studies, neuropathology and neuroimaging have been used to explore
AD subtypes. Murray et al. found that the neurofibrillary pathological process in some
AD patients followed an alternative distribution based upon a large autopsy series [2].
This was the first time the hypothesis that AD had distinct subtypes from the clinical and
pathological points of view had been supported. Whitwell et al. tracked the AD subtypes
in vivo by investigating the atrophy patterns in structural MRI, along with regional vol-
umetric analysis [28]. They found three AD subtypes whose atrophy regions matched
the neurofibrillary pathological results. Our current study defined the AD subtypes in
a univariate way, and the brain regions were treated independently without consider-
ing the inter-regional covarying relationship of GM measures. The brain regions with
covarying morphological features were observed among the subjects, suggesting shared
inter-individual differences in the disease progression [29–31]. Atrophy, an established
biomarker for neurodegeneration, is related to tau accumulation in certain brain regions.
Tau PET imaging provides valuable information regarding tau accumulation in the human
brain during aging and neurodegenerative conditions [32]. As indicated in the study, the
patterns of hypometabolism noted in each subtype match well with the cortical thinning
regions [7]. The aggregation of Aβ1-42, a pathological hallmark of AD, has been reported
in both cognitively impaired and cognitively normal older adults, although controversies
exist over their mechanisms of causing neurodegeneration [33]. The multi-modal neu-
roimage analysis results revealed that the regional patterns of Aβ1-42 deposition, glucose
metabolism change, and GM atrophy presented largely overlapping distributions [34,35].
This result accords with the conclusion drawn in a study on AD continuum through the
voxel-wise approach, namely, the spatial overlap of pathology and neurodegeneration [36].
The results of our study indicate that the consistency of regional overlap in AD subtype
was not markedly influenced by different GM measurement methods.

In the analysis of matched subtype, the only significant difference was presented
in the APOE ε2 status of MAD and LTAD. MAD is a special subtype that has attracted
widespread attention in previous studies. It has the clinical symptoms of AD, but with no
obvious changes in cortical structure compared with normal aging (Figures 3 and 4). In
previous studies, mixed results regarding MAD have been presented [37]. Several studies
have shown the early onset of MAD [17,38,39]; however, a survey by Byun et al. reported
conflicting results [40]. Although some investigators have said that the MMSE score of
MAD is the best among all subtypes, an opposite result was obtained in a study [41].
Sometimes it is claimed that the proportion of APOE ε4 carriers is the highest [17,38,39];
however, it was the lowest, as pointed out in various independent studies [41,42]. Abnormal
Aβ1-42 carriers in MAD accounted for the smallest proportion in Ten Kate’s study [17],
but the opposite result has been reported in other studies [38,40]. In our current study,
the proportions of APOE ε2 was the most apparent difference in the matched subtype of
MAD (Figure 5C). It is widely known that APOE ε4 plays an important role in clearing
amyloid-beta peptides, whereas the APOE ε2 variant, found in approximately 5–10% of the
population, is considered neuroprotective [43,44]. The young APOE ε2 carriers have higher
CT values compared with the other APOE genotypes [45,46]. Elderly normal APOE ε2
carriers also exhibit slower rates of hippocampal atrophy [47]. MAD is a subtype with
the lowest degree of atrophy, which may be ascribed to the cortical protective effect of
APOE ε2 in the duration of AD. Obviously, the MAD_CT (2.8 ± 2.2 years) had a longer
disease duration than MAD density (2.3 ± 2.1 years), and the number of MAD_CT subjects
was larger than that MAD density subjects. In addition to the protective effect of APOE ε2,
the progression of NFTs cannot be ignored. The spatial distribution of NFTs pathology is
associated with neuronal and synaptic dysfunction, and neuronal loss, which initially occur
in the transentorhinal cortex and then progress to the hippocampus and other neighboring
cortices [1]. Compared with the density features, CT features cannot reflect the measures in



Brain Sci. 2022, 12, 187 10 of 13

subcortical regions. It was inferred that some MAD_CT subjects might not have obvious
pathologic changes in cortex, so they were assigned to the MAD subtype.

It was noticed that 79.2% of MAD_CT subjects also belonged to the MAD density,
while the rest, 20.8%, were assigned to LTAD density. LTAD presented prominent atrophy
in the left lateral parietal, middle, and inferior temporal, with the shortest disease duration.
Furthermore, it had the least atrophic degree, except for MAD. Many previous studies
have reported that the left hemisphere is more susceptible to AD, whose changes are more
severe and may precede the changes in the right hemisphere by up to two years [48,49].
Compared with CT measures, the density morphological measures may be more sensitive
to detecting asymmetric subcortical atrophy during the early stage of AD.

The limitations of this study included: (1) Density features could be obtained through
various toolboxes, such as FSL [50], CAT 12 (http://www.neuro.uni-jena.de/cat/, accessed
on 3 January 2022), etc. The density features obtained via SPM were used in our study.
Whether the processing toolbox could influence the subtype definition was uncertain,
which is an interesting issue worthy of further investigation. (2) A further study in a large
cohort is required. Here, an ANDI-1 cohort of subjects (around 400 AD or CN subjects) was
used to model the definition of subtypes. There were only dozens of patients in each AD
subtype. Moreover, due to the absence of nearly half of the data for beta-amyloid and tau,
it is difficult to analyze the matched subtypes more deeply from a pathological perspective.
(3) Studies on AD continuum show that molecular pathology and neurodegeneration show
different spatial relationships in the whole course of AD, so different subtype results may
be presented using mode-varying imaging methods in different stages of AD [6,36]. In
the future, the influences of different GM features on the definitions of AD subtypes can
be further explored. Moreover, the influences of mode-varying imaging methods on the
definitions of AD subtypes in different stages of AD can be compared.

5. Conclusions

Two commonly-used neuroimaging morphological measures (CT maps from
FreeSurfer’s surface-based calculation and GM density maps from SPM’s voxel-based
calculation) in AD subtype definition were used. Next, whether or not the subtypes could
be identified consistently with different morphological measures was tested. The results
suggest that the two measures can identify relatively consistent subtypes. Because the
patterns of atrophy in the matched group appear somewhat consistent, there are likely
covarying effects between density and CT measures. For MAD and LTAD, there exists some
inconsistency, which may be partially explained through APOE genotype, asymmetric
disease progression, and their interactions. However, the definitive resolution will need to
await the availability of a larger cohort. The results of our study can be considered as an
appropriate reference for facilitating AD subtype definition.
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MEM Memory ability
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CT Cortical thickness ROI Region-of-interest
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DAD Diffuse atrophy AD subtype SVM Support vector machines
EF Executive function T-tau Total tau
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ICV Intracranial volume Wr Maximum pair-wise inner-product
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